Sub-THz Imaging Using Non-Resonant HEMT Detectors
نویسندگان
چکیده
Plasma waves in gated 2-D systems can be used to efficiently detect THz electromagnetic radiation. Solid-state plasma wave-based sensors can be used as detectors in THz imaging systems. An experimental study of the sub-THz response of II-gate strained-Si Schottky-gated MODFETs (Modulation-doped Field-Effect Transistor) was performed. The response of the strained-Si MODFET has been characterized at two frequencies: 150 and 300 GHz: The DC drain-to-source voltage transducing the THz radiation (photovoltaic mode) of 250-nm gate length transistors exhibited a non-resonant response that agrees with theoretical models and physics-based simulations of the electrical response of the transistor. When imposing a weak source-to-drain current of 5 μA, a substantial increase of the photoresponse was found. This increase is translated into an enhancement of the responsivity by one order of magnitude as compared to the photovoltaic mode, while the NEP (Noise Equivalent Power) is reduced in the subthreshold region. Strained-Si MODFETs demonstrated an excellent performance as detectors in THz imaging.
منابع مشابه
Tunable THz plasmon resonances in InGaAs/InP HEMT
Voltage-tunable plasmon resonances in a InGaAs/InP high electron mobility transistor (HEMT) are reported. The gate contact consisted of a 0.5 micron period metal grating formed by electron-beam lithography. Narrow-band resonant absorption of THz radiation was observed in transmission in the range 10 – 50 cm. The resonance frequency red-shifts with increasing negative gate bias as expected. Phot...
متن کاملTerahertz Electronics
Applications of terahertz technology include detection of biological and chemical hazardous agents, explosive detection, applications in building and airport security, radio astronomy and space research, and in biology and medicine, for example, in cancer diagnostics. These applications have stimulated a lot of interest in terahertz electronics technologies that have potential to replace or aug...
متن کاملHybrid Metal-Graphene Plasmons for Tunable Terahertz Technology
Among its many outstanding properties, graphene supports terahertz surface plasma waves – sub-wavelength charge density oscillations connected with electromagnetic fields that are tightly localized near the surface[1, 2]. When these waves are confined to finite-sized graphene, plasmon resonances emerge that are characterized by alternating charge accumulation at the opposing edges of the graphe...
متن کاملHigh Temperature Terahertz Detectors Realized by a GaN High Electron Mobility Transistor
In this work, a high temperature THz detector based on a GaN high electron mobility transistor (HEMT) with nano antenna structures was fabricated and demonstrated to be able to work up to 200 °C. The THz responsivity and noise equivalent power (NEP) of the device were characterized at 0.14 THz radiation over a wide temperature range from room temperature to 200 °C. A high responsivity Rv of 15....
متن کاملCutting-edge terahertz technology
Terahertz (THz) radiation, which lies in the frequency gap between the infrared and microwaves, typically referred to as the frequencies from 100 GHz to 30 THz, has long been studied in fields such as astronomy and analytical science. However, recent technological innovation in photonics and nanotechnology is now enabling THz research to be applied in many more sectors. Today, THz technology is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2018